c219 10:00 JD Vance to visit Armenia and Azerbaijan in February, says Trump 09:50 Iran claims first ICBM test amid US naval deployment and deadly crackdown 09:30 Wadephul calls European Parliament vote on Mercosur deal a serious political error 09:20 Meloni suggests Nobel Peace Prize for Trump over Ukraine peace 08:50 Zelensky secures Trump agreement for Patriot missiles 08:30 Air France suspends flights to Dubai as KLM halts routes to the Middle East 08:20 Netflix vows to preserve HBO team amid Warner Bros. Discovery acquisition 07:50 Russia launches massive drone and missile assault on Kyiv amid peace talks 07:30 Christina Ricci to star in series adaptation of The Astrology House 17:50 Bitcoin drops below key threshold amid bearish signals 17:20 Orbán reveals EU document proposing Ukraine membership by 2027 16:50 Solar stocks surge worldwide amid tax credit rush and Musk's space solar vision 16:20 China and Brazil back UN amid Trump's peace council launch 15:50 EU, US, and Ukraine near post-war economic prosperity deal 15:20 EU vows Arctic defense boost amid Greenland crisis straining US ties 13:55 United States formally exits World Health Organization 13:50 Israel's ambiguous goals for Gaza amid stalled reconstruction efforts 13:20 Silver surges to record highs amid China's export curbs 12:50 Iran protests death toll surpasses 5,000 amid brutal crackdown 12:50 China sets yuan below 7 per dollar for first time since 2023 12:20 Ukraine, Russia, and United States hold first trilateral talks since 2022 invasion 11:50 US control of Venezuelan oil jeopardizes debt repayments to China

Mit team cools trapped ions far below standard limit

Friday 16 - 09:20
By: Dakir Madiha
Mit team cools trapped ions far below standard limit

Researchers from the Massachusetts Institute of Technology and MIT Lincoln Laboratory have developed a breakthrough technique that cools trapped ions to temperatures about 10 times lower than the conventional Doppler limit in laser cooling. This method, leveraging integrated photonics on a chip, achieves the feat in roughly 100 microseconds, outpacing existing approaches by several multiples. The innovation tackles a key bottleneck in trapped-ion quantum computing, where ions must approach absolute zero to curb vibrations that trigger computational errors.

Traditional setups rely on bulky external lasers and optics to target ions held in cryostats, limiting scalability to just dozens of qubits. The new polarization gradient cooling employs two light beams with differing polarizations that intersect to create a rotating vortex, efficiently damping ion motion. Implemented on a photonic chip with nanoscale antennas linked by waveguides, this allows envisioning thousands of sites on a single chip interfacing with numerous ions for scalable operations. Felix Knollmann, a doctoral student in MIT's physics department, noted that this paves the way for expansive quantum systems. The findings appear in Light: Science and Applications and Physical Review Letters.

In parallel, scientists from the Technical University of Vienna and Rice University reported observing an emergent topological semimetal, a quantum state once deemed impossible because it merges two supposedly incompatible phenomena. Working with a cerium-ruthenium-tin compound near absolute zero, they detected topological properties despite electrons lacking the precise velocities and energies typically required. Diana Kirschbaum, lead author from TU Wien, described the material as oscillating between states, rendering the quasiparticle concept meaningless in this fluctuating regime. Silke Bühler-Paschen, a TU Wien physics professor and co-leader, called it a major surprise, urging broader definitions of topological states. Theoretical modeling by Lei Chen in Qimiao Si's Rice group linked the behavior to quantum criticality itself. Published in Nature Physics, these advances promise practical quantum technologies, from scalable processors to advanced sensors and low-power electronics.


  • Fajr
  • Sunrise
  • Dhuhr
  • Asr
  • Maghrib
  • Isha

Read more

This website, walaw.press, uses cookies to provide you with a good browsing experience and to continuously improve our services. By continuing to browse this site, you agree to the use of these cookies.