Breaking 07:50 Russian oil tankers list Singapore as destination as India cuts imports 18:50 Estonia says Russia does not plan NATO attack in near term 17:30 L’UE approuve le rachat de Wiz par Google pour 32 milliards de dollars 16:50 Half of global coral reefs bleached during prolonged marine heatwave, study finds 16:20 UK police review claims Prince Andrew shared confidential material with Epstein 15:50 Ariane 64 set for maiden launch from Europe’s spaceport 15:20 Tehran excludes protest detainees from mass clemency decree 14:30 EU’s Kallas outlines conditions Russia must meet for Ukraine peace deal 14:20 Iranian security chief meets Oman’s sultan as U.S. talks continue 13:50 United States and Canada reveal Olympic hockey line combinations in Milan 13:20 Winter Olympics spectators shed coats as Cortina reaches 4°C 13:00 China pledges support for Cuba as fuel shortages worsen 11:50 TSMC posts record January revenue as US weighs tariff exemptions 11:30 Robot dogs to assist Mexican police during 2026 World Cup 11:20 Macron warns of US pressure on EU and urges Europe to resist 11:00 Transparency International warns of worrying democratic decline 10:50 Honda quarterly operating profit plunges as tariffs and EV slowdown bite 09:50 Air Canada suspends flights to Cuba as fuel crisis deepens 09:20 Mexico halts oil shipments to Cuba to avoid threatened US tariffs 09:03 US backs renewed UN-led efforts on Sahara after Madrid talks 09:00 Meta and Google face trial over alleged addiction of young users 08:50 Cuba suspends aircraft fuel supply for a month amid energy crisis 08:20 Russia accuses United States of abandoning proposed Ukraine peace plan

Excitons outperform light in quantum materials engineering

Monday 19 January 2026 - 15:20
By: Dakir Madiha
Excitons outperform light in quantum materials engineering

Researchers have achieved a breakthrough in Floquet engineering, revealing that excitons quasiparticles formed within semiconductors can alter material properties far more effectively than light alone. This discovery paves the way for on-demand creation of exotic quantum materials.

Scientists from the Okinawa Institute of Science and Technology (OIST) and Stanford University demonstrated that exciton-driven Floquet effects in monolayer semiconductors are two orders of magnitude stronger and longer-lasting than those produced by conventional light-based methods. The findings, published in Nature Physics on January 18, 2026, highlight a promising alternative to traditional approaches.

Floquet engineering typically relies on periodic external forces, such as intense laser light, to temporarily reshape a material's electronic structure and convert ordinary semiconductors into exotic quantum states. Yet, practical challenges persist: the high light intensities often risk damaging samples while yielding only modest results.

The new study introduces excitons as a superior driving force. When photons excite electrons in a semiconductor, they leave behind positively charged "holes," forming bound electron-hole pairs known as excitons. These quasiparticles oscillate at tunable frequencies and interact more strongly with surrounding electrons than photons do, thanks to potent Coulomb forces, especially in 2D materials.

Professor Keshav Dani from OIST's Femtosecond Spectroscopy Unit noted that excitons couple much more strongly to the material than photons. This opens a potential pathway to the exotic quantum devices and materials promised by Floquet engineering.

The team validated their approach using time- and angle-resolved photoemission spectroscopy (TR-ARPES). They first observed Floquet replicas from intense optical pumping, then reduced light intensity by over an order of magnitude and detected exciton-driven effects just 200 femtoseconds later.

Dr. Vivek Pareek, an OIST alumnus now at the California Institute of Technology, reported that capturing light-induced Floquet effects required dozens of hours of data acquisition, while exciton versions took only about two hours and produced far more pronounced signals. Measurements confirmed hybridization between exciton-dressed conduction bands and valence bands, aligning with first-principles calculations and linking to excitonic insulator physics.

The implications extend further, suggesting that other bosonic quasiparticles like phonons from acoustic vibrations, plasmons from free electrons, and magnons from magnetic fields could fuel Floquet engineering.

Dr. David Bacon, formerly at OIST and now at University College London, described the work as unlocking applied Floquet physics. With strong potential for directly creating and manipulating quantum materials, it provides the spectral signatures needed for practical first steps, even if the full recipe remains elusive.


  • Fajr
  • Sunrise
  • Dhuhr
  • Asr
  • Maghrib
  • Isha

Read more

This website, walaw.press, uses cookies to provide you with a good browsing experience and to continuously improve our services. By continuing to browse this site, you agree to the use of these cookies.