Breaking 18:50 Kremlin says talks underway to help Cuba amid stifling US sanctions 17:50 European banking alliance urges urgent alternatives to Visa and Mastercard 17:30 Sophie Adenot’s ISS mission delayed due to unfavorable weather conditions 17:20 Iran arrests reformist leaders as Khamenei calls for unity 16:50 Milan Cortina launches probe after Olympic medals crack and break 16:20 Yuan hits 33-month high after China urges banks to cut US Treasuries 15:50 Vance arrives in Armenia for first-ever US vice presidential visit 15:11 EXCLUSIVE Mohamed Chiker to Walaw: “The Sahara file is entering a phase of concrete implementation” 14:50 Epstein documents trigger wave of political resignations across Europe 14:30 Trump criticizes Team USA skier over political remarks 13:15 Four civilians, including a child, killed in Russian night attacks in Ukraine 13:00 Trump announces anticipated visit of China's Xi to the US later this year 12:50 Musk says Tesla Semi mass production is set for 2026 11:50 China urges banks to curb US Treasury exposure over risk concerns 11:30 Former Kosovo President Hashim Thaçi faces war crimes trial 11:20 Ilia Malinin lands first legal Olympic backflip in half a century 10:30 Prince William begins three-day official visit to Saudi Arabia 10:20 Michelangelo drawing sells for $27.2 million, shattering auction record 09:30 In Riyadh, Loudiyi highlights Morocco–US defense partnership at World Defense Show 09:20 Epstein abuse survivors air Super Bowl ad demanding justice department transparency 09:00 French navy seizes 1.4 tons of cocaine in Atlantic operation 08:50 Japan signals possible yen intervention after ruling party landslide 08:20 Musk says SpaceX now targets building a lunar city within decade 07:50 Hong Kong jails media tycoon Jimmy Lai under security law 07:20 US and Canada congratulate Japan’s Takaichi on historic election victory 07:00 Seattle Seahawks defeat New England Patriots to win super bowl

Iowa scientists refine photon purity to advance quantum technology

Thursday 25 December 2025 - 11:50
By: Dakir Madiha
Iowa scientists refine photon purity to advance quantum technology

Researchers at the University of Iowa have developed a new theoretical model that could resolve major challenges in quantum technology by purifying photons—the fundamental light particles that form the basis of quantum computing and communication systems. Their work, published in Optica Quantum, offers a potential route to generating single, interference-free photons with unprecedented precision.

Transforming noise into an advantage

In traditional quantum optical setups, unwanted photons and scattered laser light often disrupt experiments, reducing accuracy and efficiency. Graduate researcher Matthew Nelson uncovered that both sources of interference the stray photons and the scattered laser light share nearly identical properties. By tuning them to interact destructively, they can effectively cancel each other out, leaving behind an exceptionally clean photon flow.

Assistant Professor Ravitej Uppu, who led the study, explained that the discovery could turn one of quantum photonics’ most persistent problems into a strategic advantage. Researchers found that by adjusting how a laser interacts with an atom through angle, intensity, and configuration—they can suppress additional photon emissions and maintain a perfectly ordered single-photon stream.

Unlocking potential for quantum computing and security

Purified single-photon sources could help overcome one of the main technological barriers in developing scalable photonic quantum computers, which use light particles instead of electrical signals to carry information. Such precision is not only crucial for computation but also for quantum communication, where single-photon channels provide unmatched data security that is virtually immune to interception.

The study was supported by the Office of the Under Secretary of Defense for Research and Engineering, under the U.S. Department of Defense, and received additional funding from the University of Iowa’s internal research grant program. Although the findings are currently theoretical, the research team plans to carry out experimental trials to confirm the model’s effectiveness.


  • Fajr
  • Sunrise
  • Dhuhr
  • Asr
  • Maghrib
  • Isha

This website, walaw.press, uses cookies to provide you with a good browsing experience and to continuously improve our services. By continuing to browse this site, you agree to the use of these cookies.