Breaking 18:50 France expands humanitarian visas for Iranians fleeing crackdown 18:00 Meta prepares Instants app to rival Snapchat with ephemeral media 17:50 Sanctioned oil tankers shift to Russian flag amid Western seizures 17:20 Iran marks revolution anniversary amid protests and nuclear talks 16:50 Palo Alto Networks closes $25 billion CyberArk deal, plans Tel Aviv listing 16:20 Russian airlines evacuate tourists and halt Cuba flights 15:50 China tests Long March 10 rocket in step toward 2030 moon landing 15:08 Disney CEO designate plans film premieres inside Fortnite 15:02 Netanyahu urges Trump to widen Iran talks beyond nuclear issue 14:50 China top chipmaker warns of crisis as AI drives memory shortage 14:20 Poland declines to join Trump Peace Council 13:50 Qatar emir and Trump discuss Middle East de escalation efforts 13:30 Russia warns of countermeasures over potential militarization of Greenland 12:50 Ye to stage first European concerts in over a decade 12:20 Russian Arctic resort becomes hub for sanctioned LNG tankers 12:00 United States to deploy troops in Nigeria for military training 11:50 Russia oil revenues hit lowest level since pandemic 10:30 Israeli journalist removed from Netanyahu’s Washington flight over security concerns 10:20 Novatek profit plunges 62 percent as sanctions hit LNG business 09:50 Tesla files criminal complaint against German union representative 08:20 Trump considers second aircraft carrier if Iran talks fail 07:50 Russian oil tankers list Singapore as destination as India cuts imports

Silver coating makes solid-state batteries five times crack-resistant

Friday 16 January 2026 - 13:50
By: Dakir Madiha
Silver coating makes solid-state batteries five times crack-resistant

Researchers at Stanford University have developed an ultra-thin silver coating for solid electrolytes that boosts crack resistance nearly fivefold, tackling a key barrier to commercializing next-generation lithium-metal batteries. Published January 16 in Nature Materials, the breakthrough promises safer batteries with higher energy density and faster charging compared to current lithium-ion technology.

Solid-state batteries aim to replace flammable liquid electrolytes with durable ceramic materials like LLZO, composed of lithium, lanthanum, zirconium, and oxygen. These ceramics, while theoretically superior, suffer from micro-cracks during charge cycles that lead to failure. The Stanford team applied a 3-nanometer silver layer, then heated samples to 300 degrees Celsius, allowing silver atoms to diffuse 20 to 50 nanometers deep and replace smaller lithium atoms.

Dissolved silver ions, not metallic silver, proved key to hardening the ceramic and blocking crack initiation and propagation. Lead researcher Xin Xu, now an assistant professor at Arizona State University, noted this nanoscale doping transforms how fissures form on electrolyte surfaces, enabling robust solid electrolytes for advanced energy storage.

This protective approach suits real-world manufacturing, where stacking cathodes, electrolytes, and anodes inevitably creates surface imperfections that prove costly to eliminate entirely. Associate Professor Wendy Gu, the study's senior author, emphasized that a simple silver treatment realistically shields against lithium infiltration during rapid charging, preventing crack expansion.

Tests focused on localized sample areas rather than full cells, leaving scalability and long-term performance over thousands of cycles for future validation. Silver is not unique; larger metal ions like copper show promise, though less effectively, opening paths to sulfur-based electrolytes or sodium batteries that ease lithium supply strains.


  • Fajr
  • Sunrise
  • Dhuhr
  • Asr
  • Maghrib
  • Isha

Read more

This website, walaw.press, uses cookies to provide you with a good browsing experience and to continuously improve our services. By continuing to browse this site, you agree to the use of these cookies.